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SUMMARY

The vibrational behavior of cantilevered aircraft wings modeled as thin—walled beams and
incorporating piezoelectric effects is investigated. Based on the converse piezoelectric effect, the .
system of piezoelectric actuators conveniently located on the wing yield the control of its
associated vertical and lateral bending eigenfrequencies. The possibility revealed by this study
enabling one to increase adaptively the eigenfrequencies of thin—walled cantilevered beams could
play a significant role in the control of the dynamic response and flutter of wing and rotor blade
structures.

INTRODUCTION

The successful development of smart material systems technology [R1] is likely to generate
new avenues and concepts toward the design of the next generation of aeronautical and aerospace
vehicles. In spite of the complexity and severity of environmental conditions to which these
vehicles are likely to be exposed, they must be designed as to be capable to operate safely within
their flight envelope, at higher angles of attack, at superior speeds, and without weight penalties.
The implementation of smart material systems could play an important role in the design of
future advanced space vehicles.

As is well known, in the determination of both the dynamic response to time—dependent
excitations and of resonant conditions as well as in the flutter analyses, the natural frequencies are
an important tphysica.l parameter that intervenes in an explicit way [R2]. For this reason, one of
the features of adaptive structural technology applied to aeronautical structures is the ability to
conveniently control the eigenfrequencies of the system. In an effort to contribute to this
problem, the free vibration analysis of adaptive aircraft wing structures incorporating induced
strain actuation [R3,4] will be considered in this paper. The wing structure modelled as a
thin—walled beam is assumed to be composed of an induced strain actuator, e.g. a piezoelectric
layer superposed on the master structure.

The global constitutive equations associated with a piezoelectric material layer (the
induced strain actuator), polarized in the thickness direction and exhibiting transversely isotropic
properties, superposed on the thin—walled beam structure also made of a transversely—isotropic
material, are derived. These equations, used in conjunction with a generalized Hamilton’s
variational principle [R5,6], yield the equations governing the motion of cantilevered adaptive
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wing structure modelled as a thin—walled beam. Coupling the Wlllpmpertiea of piegoelectric

materials (i.e., their muatmﬁ
frequencies can be controlled in a known and predictable manner.

capabilities) with a control law, it be shown that the natural

BASIC ASSUMPTIONS

The thin—walled beam model used in the present paper is based on the following kinematic
statements [R8—12}]:

3
3)

1)
5)

The original shape of the cross—sections of the beam is preserved.
The t"ttramweraei. ear flexibility exhibited by the advanoed composite material
structures cot
The non- st torsional model is considered. In this respect, the rate of twist
auumu}r io v:.iryﬁl along tha beam axis constzttllltres u;h me:s:zhre of the wurpmgofreatmnt
effect. The primary warping displacement, throughout the cross—section of a beam
is assumed to have a similar distribution as the one associated with the St. Venant
{nuniform) torsion theory.

corporation of the secondary warping [R9] whose effect for composite material
structures could be comparable to the primary warp
In addition to these statements of kinematic natuxe other one, of a static nature
is adopted [R10]. According to this statement, the imOp stress resultant N g8

considered negligibly small with respect to the remaining ones.

Based on the above assumptions, the displacement field can be expressed as [see R7—0):

u(x.y.5) = ugs) ~y0(s) (1)

v(x,y,8) = v (2) + x6(z) , (2)

w(ns,8) = w(s) + x(8)0,(s) + y(£) 4, (s) - F (50 (2)

+ n[gg (2)-$Z 0 (s) - a(s)0 (z)] (3)
where )
0,(2) = 1,(5) — ugfa) (4)
,(x) = 7,,() = vo(s) (5)
a(s) = - y(s) L —x(s) . 0
The warping function is expressed as
B0 = 1 T ®) - ¥, ; (7)
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where the torsional function ¢ is given by

§C l'n(s) 1'1%:)' [= 2AC]

Y= d = (8)
o U7
and
r(s) =x(s) - y(0) . ®)

As 2 result, six kinematic variables uy(z), v (z), wy(2), 8.(z), 0,(z), and O(z) representing three

translations in the x, y, 2 directions and three rotations a{mut the y, x, and = axis, respectively,
are used to define the displacement vector (i.e., the displacement co:;:fonents u, v, and w in the x,
y, and z directions, respectively). Here (8,3,n) and (x,y,s) will be used to denote the surface and
cross—section reference coordinate systems, respectively (see Flﬁ. The quantity h[= h(s)] denotes
the wall thickness of the beam (allowed to vary along the periphery); A denotes the

cross—sectional area bounded by the mid—line; § denotes the total length of the contour mid—line;
(-)ds denotes the integral around the entire periphery C of the mid-line cross—section of the

8
beam; while [ r (s)ds[=0)(s)] is referred to as the sectorial area.
o

Based on the kinematic representations, Eqs. (1)—(6), the strain measures assume the form:
Azial Strain:

S, (n.82) =8 (85) + 08 _(s9) , (10)
Where s 4 L4 s,
5,4(8) = W (a) + 6)(a)x(s) + O (a)y(s) — 0 (2)F f0)
and (11)

5,,00) = 0)&) - 0 (5) 50" (x)als),

are the axial strains associated with the primary and secondary warping, respectively.

Membrane Shear Strain:

. , A~ ,
S,5(82) = [0,(2) + u (2)] 35 + [8,(2) + v,(a)] E+24%0°). (12)

Transverse Shear Strain:

S,5(82) = [0,(2) + u (D - [0,0) + v I F5 - (13)

Within the present theory the warping measure is expressible as



Wy=0'(s). (14)
Here, and in the following developments (-)'58(-)/ Os.

PIEZOELECTRIC CONSTITUTIVE EQUATIONS

The linear constitutive equations for a 3—D piezoelectric continuum expressed in the
contracted indicial notations are (see e.g., R13,14):

_nd

s (15)
Dy =e;Si+ 6y &,

where o; and Sj (i,j = 1,8) denote the stress and strain components, respectively, where

g — Sprwhenp=r,j=1,2,3
J 28, whenp # 1,j=4,5,6

Cia:i’ et ei ¢ are the elastic (measured for conditions of constant electric field), piezoelectric, and

dielectric constants (measured under constant strain), while & and Dy (k = 1,3) denote the
electric field intensity and electric displacement vector, respectively. In Eqgs. (15) the summation
over repeated indices is implied. Wlui‘ e Eq. (15)l describes the converse piezoelectric effect

consisting of the generation of mechanical stress or strain when an electric field is c:fplied), Eq.
15), describes the direct piezoelectric effect (consisting of generation of an electrical charge when

a mechanical force or pressure is applied).

In a piesoelectric adaptive structure the direct effect is used for distributed sensing while
the converse effect is used for the active distributed control. Equations (15) are valid for the most
general anisotropic case, i.e., for triclinic crystals. In the following, we will restrict the generality
to the case of a transversely isotroi)ic continuum, the n—axis being an axis of rotary symmetry
coinciding with the direction of polarization (thickness polarization).

. In this case the piesoelectric continuum is characterized by 5 independent elastic constants,
3 independent gsodeeulc constants and 2 independent dielectric constants. In the following
developments, 1or the sake of simplicity, we will assume that the master structure is constructed
from transversely isotropic material layers, the axis of symmetry being parallel to the n—axis.
We will also assume that the electric field vector a" is represented in terms of its
component & only, (implying =& ='0) and, as a result of the uniform voltage distribution,
% is independent of space (but, possibly on time). In matrix form the constitutive equations are:




0] (€13 C12 Cys 1 [8]
) Ci2 Ci1 Gy 0 Sq
o3 Ci3 C13 Cg Sq
ol = Cyq 54
o, 0 C S
° “ cycpy ’
o, S
|6, i l L6
(k) (k) (k)
0 o0 e31'
0 0 €31 0
0 e 0
15 & ®)
el5 0 0
0 0o o J
and .
Sy
- i i S
D, 0 0 0 0 ey 54
S
D €nq €01 €ag 0 0 O 5
Py %1 a1 s Jay |
26’ (k)
-eu 0 0 FO
+ 0 511 0 ‘0 P
0 0 ¢
8l (3

where the index k in brackets affecting a quantity identifies its affiliation to the k—th layer.

In terms of the engineering constants the coefficients C,. associated with a

transversely—isotropic continuum are expressed as (where for ti]:e sake of simplification the
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superscript ¥was discarded):

12 ’
Cll = (EV —-E )EIA ’
C,p=—-(Ev2+EVE/A,

Cpg=—v (1+V)EE /A, (18)

Cag=—(-AE?A , Cy=6",

Cuu€ia_ T R
7 - S

where A = (1+v) g!:.‘.v'z + E'v-E') while E, », and E , v denote Young’s modulus and
Poisson’s ratio in the plane of isotropy and transverse to the plane of isotropy, respectively while

G’ denotes the transverse shear modulus. Equation (16) reveals that a piezoelectric continuum
exhibiting anisotropic behavior cannot generate or detect shear stresses/strains by applying or
detecting electric fields along the n~direction.

INCORPORATION OF ACTUATOR PATCHES AND ASSOCIATED
CONSTITUTIVE EQUATIONS

As was stated earlier, the master structure is composed of layers of elastic materials also
exhibiting transversely—isotrapic behavior. Their associated constitutive equations could be
established formally by discarding the electrical effects in Eq. (18) and Eq. (17).

Suppose that the master structure is composed of such layers, while the actuator
(superpoaeﬁn the master structure) is composed of £ piesoelectric layers. We also stipulate that
the actuators are distributed over the entire span of the wing (i.e., along the entire spanwise
coordinate z), (see F2) while along the circumferential s— and transversal n—directions they are
distributed according to the law (gee F3):

R(k)(n) = H(n - n(k_)) —H(n- n(k +)
R(k)(s) =H(s — s(k_)) —H(s - s(k +)) ,

where H denotes Heaviside’s distribution and R is a spatial function [R15]. In terms of the
coordinates (s,3,n), related to the beam, the constitutive equations are expressed as

)
(19)




r

04 CpCy 0 | [s4 oft) oA R y)(m) Rey)(8)

1% = [C12Cn O 1528 ] ’
C,,-C k) (k)
o o Sl |g o) Y R | (m) Ry (8)
.Usz‘ (k) | -—2-— (k) | 8% (k) ( ) ( )
0
and ) ’
o{¥) = c{Ks(k) (20)

LOCAL BEAM CONSTITUTIVE RELATIONSHIPS

Assume that the master structure is composed of m layers while the actuator part is
composed of £ layers. As a result, the global beam stress resultants and couples could be obtained
through the integration of the 3—D stress components through the laminate thickness and
afterwards through the integration of the local stress resultants along the contour of the beam.
Invoking the assumption 5), the local beam stress resultants defined in terms of the associated
strains are:

Stress Resultants:

N =AgS,, , (21)

L =K,.§ +KHS

22 11%zz 75

Z
piezoelectrically induced stress resultant and stress couple. Their expressions are

W BygAjs
Ky =Apy gy Ky =By -—x— vl

In these equations K, j denote the modified local stiffness coefficients while N: and L:z the
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_ 2
K. =D, —.12 (22)
n=Pu-x;

A ¢
Npy = {1 B xﬁ] kZ . Ly [n(k+) B n(k‘)] esll‘)R(k)(”’)

(23)
I'4
a _ k) (k) . _ 1 _Byy
SRR L ey Bty o)
whereas
m+{ 0
A= 1 o[ 2]
k=1
1 m+l k)[ 2 2
Byj=3 k.X—.l of sty -~ e (24)
. m+{ ®) 3
D;;= kzl of (=) ~ =)

define the sttetchg' bending—stretching and bending stiffness quantities, respectively. In Eqs.
(23), for the sake l’mevitynﬁxe following notation
was introduced.

It should be emphasized that the constitutive e:;lluations 21) relate the stress resultants and
couples with the strain components and the electric field, &. he analysis yielding such

equations is called uncon;rled because an approximate solution to the electrostatic problem is
postulated, with the result that 8‘,’ is constant.

THE DYNAMIC EQUATIONS OF ADAPTIVE THIN-WALLED BEAMS

In the previous sections the kinematic equations and the local constitutive equations for
the oonaidereJ a.da‘ftive structure were derived. In order to obtain the equation of motion of an
adaptive TWB and the associated boundary conditions, we will make use of Hamilton’s
variational principle extended to the case of a linear 3—D piezoelectric medium [R5,6}:

o o] 0~ we e+ [ om-sin] <0,
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where J¥denotes the electric enthalpy density defined as:
_1~E 158
F=3Ci5S e gSi—Tu k% (27)

7 and  denote the volume and bounding surface of the continuum, respectively; ) denotes the

specified surface—traction; & the applied surface charge; fl the body forces; to by denote two

arbitrary instants of time; p the material density; § the variation sign, while the overdots denote
time derivatives.

Recalling that

0¥
'8-'s—= G’i and -a—x; = - Dk ’ (28)

when & = 0, defining & in terms of a potential function as
§=-¢;> (29)

taking the variations in (26) and applying Green’s theorem whenever possible, we obtain, b
considering the variations 8U,, 6¢ and Jai as independent and arbitrary, a known version of the

fundamental equations of the 3—D linear piezoelectricity theory, namely

ipj oA i] in T, (30)

U.=1, ¢r=niDi on Qu,

are obtained, where n, denote the components of the normal to 1. Consideration in Eq. (26) of
the displacement components Ui asu,, Vo, W, 0x, Gy, and 6, and of Si as the ones defined by

Egs. (10)—(13); employment of d7 = dndsdz and performing the integration across the s—and
n—directions, the 3—D problem is reduced to an equivalent 1-D one, in which all the quantities are
dependent on the z—coordinate only. To this end, the 1-D stress resultants and stress couples
specific to the theory of TWBs defined in terms of the local (i.e., 2—D) beam stress—resultants are

T (2) = §c N, ds; Q () = §c [st &N, ds] ds,

QY(Z) - §C [st g% ~Nen %xs_] ds , M (z) = §C [y Npz = Lyg %] ds,
(31)
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(o) = [, + 1, Faws 0 =, 2,

B, (2) = §C[F SON_ +a(s)L_Jds .

and

quﬂﬂammtou the axial and shear forces (in the x and y directions), and the
moments (in the x, y ard & directions) as well as the bimoment global quantities. In terms of the
1-D stress resultant measures, (Eq. 31), the equations of motion of adaptive TWBs become:

’

0
’
ﬁvoz Qy—l2+py=0,
’

y , (32)

e
601: Mx—Qy—15+mx=0 )

']

Here Py py, P, and m, my and m, are the distributed loads and moments in the x, y, and

s—directions, respectively; b, is the bimoment of the external loads while I, (i = 1,8) are the

inertia terms not displ,ged in the paper. By virtue of Egs. £21), (23) and (31) the stress resultant
T’, the stress couples x and My as well as the bimoment w could be recast in a form in which
the actuator effect appears in a separated form, namely

T,=T,-T,; M =M -M_,
(33)
M =M -M ; B,=B -8,

where the quantities affected by an overhat (") and an overtilde (”) identify the pure mechanical
and piezoelectric contributions to the indicated quantities, respectively.

Being concerned in this study with the free vibration problem only, the loading terms
occurring in Eqs. (32) may be discarded. From the Hamilton’s principle, in addition to the
equations of motion (32), the boundary conditions (BCs) are also obtained. For the case of the
beam clamped at z = 0 and free at z = L, the BCs are:
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At the clamping edge (z = 0):

uo=90;vo=fo;wo=v.'o;0x=gx;oy=9y;959;9 =8 (34)

and at the free edge (z = L):
Q=QyiQy=Qy; T, =T, i My =M M, =M,

M,+B,=M,;B, =B, (35)

where the undertilde sign affects the prescribed quantities and where L denotes the length of the
beam. It could be verified that consistent with seven boundary conditions at each edge, a
fourteenth order governing equation system is obtained.

In the case of the general anisotropy of the layer materials (i.e., of the master structure, of
the actuator patches or of both of them), the system of governing equations results in a complete
coupled form. However, in the present case of anisotropy, the governing equations obtainable
from Eqgs. (32), g appear decoupled from the ones obtainable from (32), 5 and (82)4 4 Inother

’ ] ]

words, in the present case of anisotropy, the governing system of equations and the associated BCs
are splitting exactly into three uncoupled sub—systems. While the first mentioned sub—system of
equations governs the lateral bending motion (or in helicopter terminology, the flap-lag motion),
the second and the third ones govern the vertical bending and twist motions, respectively.

In this study only the undamped free bendins vibration case is studied. The pertinent
governing equations for free vibration of thin—walled beams are:

For transverse bending vibrations:

ags(v, + 0, )+ b1w2v0 =0

(36)
agl, —agg (v, + 0,) + w(by + by )0, = 0.
with the BCs at z = 0:
Vo = ﬂx =0 (37)
and at z =L:
v, +0,=0 and 2a30, =M, (38)
For lateral bending vibrations:
(39)
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aggl, " —a44(n, + 8) + WP(bg +byp) =0

y
with the BCs at 2 = 0:
u, = 0y =0 (40)
andatz=L:
u, + Oy =0 and 3220y = My’ (41)

These equations were obtained by considering the following harmonic time—dependence
F(st)= Fexplict), i=T (42)
where JFstands for a generic field variable.

)¢ governing equations and:the associated BCs are expressed in terms of the

quan olving the dependence on the s—com only, i.e., according to Eq. (42) in terms
of the bamd counterparts of the field varisbles. However, or the sake of simplicity these
overbars have been dropped. The expressions of elastic constants %; and mass terms b,
intervening in Eqs. (36) and (39) are not displayed here. In the same equations Mx and M

y
denote the piesoelectrically induced moments expressed as:

A
ety 5, Pl el 32

+a'r] °—5§ [a'x ‘gk)[ W) (r)] 51)3(1;)(8’”)]"3'

(43)
A B
M, § 2 ék)[ ) —-n (k‘)] egll‘)R(k)(s,z) [x{l - lﬁ] g% K—i%] ds

i, [ T - e

For the case of the symmetrically located actuators across the thickness of the beam structure, the
terms affected by a solid line in Eqgs. (43) vanish. In hlsxht of the actuator configuration, it may be
inferred that the expressions (43) are m lependent on the z—coordinate. This explains why their
contribution in the governing equations is immaterial and why in the BCs they intervene as
nonhomogeneous terms.
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THE CONTROL LAW
The adaptive nature of the wing (or rotor blade) structure is introduced by requiring the
applied electric field !3 to be dependent to one of the mechanical quantities of the structure in

motion. With this in mind, a number of control laws could be implemented. Their efficiency may
be measured by their ability to modify as much as possible the natural frequencies of the structure
with respect to the energy input. In the present considerations, two control laws were considered.

The two independent control laws require that: i) the applied electric field & is

proportional to the vertical or lateral bending moments at the wing root, M_(o) or My(o),

depending on whether the control of the natural frequencies is associated with the vertical or
lateral motion, respectively and ii) the applied electric field % is proportional to the vertical

(vo(L)) or lateral (u (L)) deflections of the beam tip, depending on the two directions of

vibrations whose frequencies are to be controlled. In light of these control approaches, we may
formulate the following control laws (labelled as CL1 and CL2) by involving also the boundary
conditions given in expression (38) and (41).

CL1)

a) Associated with the vertical bending

, (L) =K,0,"(c) (44
b)  Associated with the lateral bending

ay (L) = Kpoy (o) (45)
CL2)
a) Associated with the vertical bending

g, (L)= vao(L) (46)
b)  Associated with the lateral bending

0y (L) = Kpuo(L) (47)
As can be seen from Eqs. (44)—(47), the feedback gains I'(p and Kp are dimensional and
nondimensional, respectively. The nondimensional counterpart of Kp is Kp defined as
> _ 5 or2
Kp = KpL .
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These control laws express the fact that the control bending moments at the wing tip
gp:nced by the piezoelectric strain) should be proportional as per the CL1 to the mechanical
ding moments at the wing root, and within the CL2 to the transversal or lateral deflections at

the wing tip.

NUMERICAL ILLUSTRATIONS AND DISCUSSION

The adaptive wing is modelled as a symmetric composite box—beam. In order to control
the vertical bendix;g frequencies, the piezoceramic actuator layers (selected to be of PZT-4
ceramic) are located on the upper and bottom surfaces of the master structure only, while in order
to control the lateral bending frequencies the piezoceramic layers are located on the lateral walls
of the master structure. The geometrical characteristics (restricted to the former situation, only)
are displayed in F2 while the constants characterizing the PZT—4 piezoceramic (see [R16]) are:

C,, =2016x10 psi; C,,=1.128x 107 psi

11

Cyq = 10776 x 107 psi; Cgq = 1.6670x 107 psi

Cyy = 3.7128 x 10° psi;

e, s = 0.07252 Ib/inV.

For the sake of simplicity assume that the master structure is composed of a
trmﬁdyﬁ;isotropic material whose elastic characteristics are identical to the piezoceramic
actuator layers. .

By using the exact approach devised in [R17-19] and extended afterwards in [R7-0], the
eigenvalue problems associated with the vertical and lateral vibrations of TWBs yield the

variation of the nondimensional eigenfrequencies w vs. the feedback gains K, and Kp.

In F4-7, by using the control law CL1, the variation of the first four ej uencies
associated with the vertical bending vs. the feedback gain was dia.%':mmati y represented,
while in F8 and 9, by using the control law CL2, the variation of the vertical (plunging) and

lateral bending fundamental frequencies w vs. the feedback gain I'(p was obtained. F4-7 reveal

that within control law CL1 the increase of the odd eigenfrequencies occurs for negative feedback
gains while the increase of the even eigenfrequencies requires implementation of positive feedback
gains. F8 and 9 (as well as the results obtained, but not displayed in the paper) reveal that within
control law CL2 the increase of the eigenfrequencies occurs generally for positive feedback gains.
Within a CL2 type contiol a similar trend was &iso onnes' in R20.

It shoul pointed out that in all diagrams, F4-9, the frequencies were normalized with
respect to the ones corresponding to the non—adaptive structure (for which case Kp =0).
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Having in view that, roughly speaking, w~ Dll 2, h3/ _%,gwhete D and h are the associated
bending rigidity and thickness of the beam, we could infer thaf the linear increase of
eigenfrequencies would have been accomplished without the-hélp of this adaptive technology
through an unaffordable weight penalty. The obtained results reveal, once again, the great
importance of the implementation of adaptive technology applied to the control of the material
frequencies of the structure. In short, the obtained results reveal that by using the adaptive
properties of the structure it is possible to increase the eigenfrequencies of the system and
consequently to modify in a beneficial way the dynamic response characteristics of the structure,
whose role in the present case could be played by an aircrait wing or a rotor blade structure.
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